Paper Reading AI Learner

Unifying Model Explainability and Robustness via Machine-Checkable Concepts

2020-07-01 05:21:16
Vedant Nanda, Till Speicher, John P. Dickerson, Krishna P. Gummadi, Muhammad Bilal Zafar

Abstract

As deep neural networks (DNNs) get adopted in an ever-increasing number of applications, explainability has emerged as a crucial desideratum for these models. In many real-world tasks, one of the principal reasons for requiring explainability is to in turn assess prediction robustness, where predictions (i.e., class labels) that do not conform to their respective explanations (e.g., presence or absence of a concept in the input) are deemed to be unreliable. However, most, if not all, prior methods for checking explanation-conformity (e.g., LIME, TCAV, saliency maps) require significant manual intervention, which hinders their large-scale deployability. In this paper, we propose a robustness-assessment framework, at the core of which is the idea of using machine-checkable concepts. Our framework defines a large number of concepts that the DNN explanations could be based on and performs the explanation-conformity check at test time to assess prediction robustness. Both steps are executed in an automated manner without requiring any human intervention and are easily scaled to datasets with a very large number of classes. Experiments on real-world datasets and human surveys show that our framework is able to enhance prediction robustness significantly: the predictions marked to be robust by our framework have significantly higher accuracy and are more robust to adversarial perturbations.

Abstract (translated)

URL

https://arxiv.org/abs/2007.00251

PDF

https://arxiv.org/pdf/2007.00251.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot