Paper Reading AI Learner

Multiclass Classification with an Ensemble of Binary Classification Deep Networks

2020-06-28 15:37:39
Abdul Mueed Hafiz, Ghulam Mohiuddin Bhat

Abstract

Deep neural network classifiers have been used frequently and are efficient. In multiclass deep network classifiers, the burden of classifying samples of different classes is put on a single classifier. As shown in this paper, the classification capability of deep networks can be further increased by using an ensemble of binary classification deep networks. In the proposed approach, a single (one-versus-all) deep network binary classifier is dedicated to each category classification. Subsequently, binary classification deep network ensembles have been investigated. Every network in an ensemble has been trained by a one-versus-all binary training technique using the Stochastic Gradient Descent with Momentum Algorithm. For classification of the test sample, the sample is presented to each network in the ensemble. After softmax-layer score voting, the network with the largest score is assumed to have classified the sample. Digit image recognition has been used for experimentation. Three datasets have been used for experimentation viz. the MATLAB Digit Image Dataset, the USPS+ Digit Image Dataset, and the MNIST Digit Image Dataset. The experiments demonstrate that given sufficient training, a Binary Classification Convolutional Neural Network (BCCNN) ensemble can outperform a conventional Multi-class Convolutional Neural Network (MCNN). In one of the experiments, it was noted that after training and testing of a BCCNN ensemble and an MCNN respectively on a subset of the MNIST Digit Image Dataset, the BCCNN ensemble gave a higher accuracy of 98.03% as compared to the MCNN which gave an accuracy of 97.90%. The architecture of the BCCNNs in an ensemble has also been modified in order to increase their recognition accuracy. On a large subset of the MNIST Digit Image Dataset, the modified BCCNN ensemble gave a higher accuracy of 98.50%, while as the MCNN gave an accuracy of 98.4875%.

Abstract (translated)

URL

https://arxiv.org/abs/2007.01192

PDF

https://arxiv.org/pdf/2007.01192.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot