Paper Reading AI Learner

Surrogate-assisted Particle Swarm Optimisation for Evolving Variable-length Transferable Blocks for Image Classification

2020-07-03 08:48:21
Bin Wang, Bing Xue, Mengjie Zhang

Abstract

Deep convolutional neural networks have demonstrated promising performance on image classification tasks, but the manual design process becomes more and more complex due to the fast depth growth and the increasingly complex topologies of convolutional neural networks. As a result, neural architecture search has emerged to automatically design convolutional neural networks that outperform handcrafted counterparts. However, the computational cost is immense, e.g. 22,400 GPU-days and 2,000 GPU-days for two outstanding neural architecture search works named NAS and NASNet, respectively, which motivates this work. A new effective and efficient surrogate-assisted particle swarm optimisation algorithm is proposed to automatically evolve convolutional neural networks. This is achieved by proposing a novel surrogate model, a new method of creating a surrogate dataset and a new encoding strategy to encode variable-length blocks of convolutional neural networks, all of which are integrated into a particle swarm optimisation algorithm to form the proposed method. The proposed method shows its effectiveness by achieving competitive error rates of 3.49% on the CIFAR-10 dataset, 18.49% on the CIFAR-100 dataset, and 1.82% on the SVHN dataset. The convolutional neural network blocks are efficiently learned by the proposed method from CIFAR-10 within 3 GPU-days due to the acceleration achieved by the surrogate model and the surrogate dataset to avoid the training of 80.1% of convolutional neural network blocks represented by the particles. Without any further search, the evolved blocks from CIFAR-10 can be successfully transferred to CIFAR-100 and SVHN, which exhibits the transferability of the block learned by the proposed method.

Abstract (translated)

URL

https://arxiv.org/abs/2007.01556

PDF

https://arxiv.org/pdf/2007.01556.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot