Paper Reading AI Learner

Rethinking Bottleneck Structure for Efficient Mobile Network Design

2020-07-05 08:55:26
Zhou Daquan, Qibin Hou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan

Abstract

The inverted residual block is dominating architecture design for mobile networks recently. It changes the classic residual bottleneck by introducing two design rules: learning inverted residuals and using linear bottlenecks. In this paper, we rethink the necessity of such design changes and find it may bring risks of information loss and gradient confusion. We thus propose to flip the structure and present a novel bottleneck design, called the sandglass block, that performs identity mapping and spatial transformation at higher dimensions and thus alleviates information loss and gradient confusion effectively. Extensive experiments demonstrate that, different from the common belief, such bottleneck structure is more beneficial than the inverted ones for mobile networks. In ImageNet classification, by simply replacing the inverted residual block with our sandglass block without increasing parameters and computation, the classification accuracy can be improved by more than 1.7% over MobileNetV2. On Pascal VOC 2007 test set, we observe that there is also 0.9% mAP improvement in object detection. We further verify the effectiveness of the sandglass block by adding it into the search space of neural architecture search method DARTS. With 25% parameter reduction, the classification accuracy is improved by 0.13% over previous DARTS models. Code can be found at: this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2007.02269

PDF

https://arxiv.org/pdf/2007.02269.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot