Paper Reading AI Learner

Can Un-trained Neural Networks Compete with Trained Neural Networks at Image Reconstruction?

2020-07-06 00:01:25
Mohammad Zalbagi Darestani, Reinhard Heckel

Abstract

Convolutional Neural Networks (CNNs) are highly effective for image reconstruction problems. Typically, CNNs are trained on large amounts of training images. Recently, however, un-trained neural networks such as the Deep Image Prior and Deep Decoder have achieved excellent image reconstruction performance for standard image reconstruction problems such as image denoising and image inpainting, without using any training data. This success raises the question whether un-trained neural networks can compete with trained ones for practical imaging tasks. To address this question, we consider accelerated magnetic resonance imaging (MRI), an important medical imaging problem, which has received significant attention from the deep-learning community, and for which a dedicated training set exists. We study and optimize un-trained architectures, and as a result, propose a variation of the architectures of the deep image prior and deep decoder. We show that the resulting convolutional decoder out-performs other un-trained methods and---most importantly---achieves on-par performance with a standard trained baseline, the U-net, on the FastMRI dataset, a new dataset for benchmarking deep learning based reconstruction methods. Besides achieving on-par reconstruction performance relative to trained methods, we demonstrate that a key advantage over trained methods is robustness to out-of-distribution examples.

Abstract (translated)

URL

https://arxiv.org/abs/2007.02471

PDF

https://arxiv.org/pdf/2007.02471.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot