Paper Reading AI Learner

Multi-Objective Neural Architecture Search Based on Diverse Structures and Adaptive Recommendation

2020-07-06 13:42:33
Chunnan Wang, Hongzhi Wang, Guocheng Feng, Fei Geng

Abstract

The search space of neural architecture search (NAS) for convolutional neural network (CNN) is huge. To reduce searching cost, most NAS algorithms use fixed outer network level structure, and search the repeatable cell structure only. Such kind of fixed architecture performs well when enough cells and channels are used. However, when the architecture becomes more lightweight, the performance decreases significantly. To obtain better lightweight architectures, more flexible and diversified neural architectures are in demand, and more efficient methods should be designed for larger search space. Motivated by this, we propose MoARR algorithm, which utilizes the existing research results and historical information to quickly find architectures that are both lightweight and accurate. We use the discovered high-performance cells to construct network architectures. This method increases the network architecture diversity while also reduces the search space of cell structure design. In addition, we designs a novel multi-objective method to effectively analyze the historical evaluation information, so as to efficiently search for the Pareto optimal architectures with high accuracy and small parameter number. Experimental results show that our MoARR can achieve a powerful and lightweight model (with 1.9% error rate and 2.3M parameters) on CIFAR-10 in 6 GPU hours, which is better than the state-of-the-arts. The explored architecture is transferable to ImageNet and achieves 76.0% top-1 accuracy with 4.9M parameters.

Abstract (translated)

URL

https://arxiv.org/abs/2007.02749

PDF

https://arxiv.org/pdf/2007.02749.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot