Paper Reading AI Learner

Learning and Reasoning with the Graph Structure Representation in Robotic Surgery

2020-07-07 11:49:34
Mobarakol Islam, Lalithkumar Seenivasan, Lim Chwee Ming, Hongliang Ren

Abstract

Learning to infer graph representations and performing spatial reasoning in a complex surgical environment can play a vital role in surgical scene understanding in robotic surgery. For this purpose, we develop an approach to generate the scene graph and predict surgical interactions between instruments and surgical region of interest (ROI) during robot-assisted surgery. We design an attention link function and integrate with a graph parsing network to recognize the surgical interactions. To embed each node with corresponding neighbouring node features, we further incorporate SageConv into the network. The scene graph generation and active edge classification mostly depend on the embedding or feature extraction of node and edge features from complex image representation. Here, we empirically demonstrate the feature extraction methods by employing label smoothing weighted loss. Smoothing the hard label can avoid the over-confident prediction of the model and enhances the feature representation learned by the penultimate layer. To obtain the graph scene label, we annotate the bounding box and the instrument-ROI interactions on the robotic scene segmentation challenge 2018 dataset with an experienced clinical expert in robotic surgery and employ it to evaluate our propositions.

Abstract (translated)

URL

https://arxiv.org/abs/2007.03357

PDF

https://arxiv.org/pdf/2007.03357.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot