Paper Reading AI Learner

AUSN: Approximately Uniform Quantization by Adaptively Superimposing Non-uniform Distribution for Deep Neural Networks

2020-07-08 05:10:53
Liu Fangxin, Zhao Wenbo, Wang Yanzhi, Dai Changzhi, Jiang Li

Abstract

Quantization is essential to simplify DNN inference in edge applications. Existing uniform and non-uniform quantization methods, however, exhibit an inherent conflict between the representing range and representing resolution, and thereby result in either underutilized bit-width or significant accuracy drop. Moreover, these methods encounter three drawbacks: i) the absence of a quantitative metric for in-depth analysis of the source of the quantization errors; ii) the limited focus on the image classification tasks based on CNNs; iii) the unawareness of the real hardware and energy consumption reduced by lowering the bit-width. In this paper, we first define two quantitative metrics, i.e., the Clipping Error and rounding error, to analyze the quantization error distribution. We observe that the boundary- and rounding- errors vary significantly across layers, models and tasks. Consequently, we propose a novel quantization method to quantize the weight and activation. The key idea is to Approximate the Uniform quantization by Adaptively Superposing multiple Non-uniform quantized values, namely AUSN. AUSN is consist of a decoder-free coding scheme that efficiently exploits the bit-width to its extreme, a superposition quantization algorithm that can adapt the coding scheme to different DNN layers, models and tasks without extra hardware design effort, and a rounding scheme that can eliminate the well-known bit-width overflow and re-quantization issues. Theoretical analysis~(see Appendix A) and accuracy evaluation on various DNN models of different tasks show the effectiveness and generalization of AUSN. The synthesis~(see Appendix B) results on FPGA show $2\times$ reduction of the energy consumption, and $2\times$ to $4\times$ reduction of the hardware resource.

Abstract (translated)

URL

https://arxiv.org/abs/2007.03903

PDF

https://arxiv.org/pdf/2007.03903.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot