Paper Reading AI Learner

Expert Training: Task Hardness Aware Meta-Learning for Few-Shot Classification

2020-07-13 08:49:00
Yucan Zhou, Yu Wang, Jianfei Cai, Yu Zhou, Qinghua Hu, Weiping Wang

Abstract

Deep neural networks are highly effective when a large number of labeled samples are available but fail with few-shot classification tasks. Recently, meta-learning methods have received much attention, which train a meta-learner on massive additional tasks to gain the knowledge to instruct the few-shot classification. Usually, the training tasks are randomly sampled and performed indiscriminately, often making the meta-learner stuck into a bad local optimum. Some works in the optimization of deep neural networks have shown that a better arrangement of training data can make the classifier converge faster and perform better. Inspired by this idea, we propose an easy-to-hard expert meta-training strategy to arrange the training tasks properly, where easy tasks are preferred in the first phase, then, hard tasks are emphasized in the second phase. A task hardness aware module is designed and integrated into the training procedure to estimate the hardness of a task based on the distinguishability of its categories. In addition, we explore multiple hardness measurements including the semantic relation, the pairwise Euclidean distance, the Hausdorff distance, and the Hilbert-Schmidt independence criterion. Experimental results on the miniImageNet and tieredImageNetSketch datasets show that the meta-learners can obtain better results with our expert training strategy.

Abstract (translated)

URL

https://arxiv.org/abs/2007.06240

PDF

https://arxiv.org/pdf/2007.06240.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot