Paper Reading AI Learner

COBE: Contextualized Object Embeddings from Narrated Instructional Video

2020-07-14 19:04:08
Gedas Bertasius, Lorenzo Torresani

Abstract

Many objects in the real world undergo dramatic variations in visual appearance. For example, a tomato may be red or green, sliced or chopped, fresh or fried, liquid or solid. Training a single detector to accurately recognize tomatoes in all these different states is challenging. On the other hand, contextual cues (e.g., the presence of a knife, a cutting board, a strainer or a pan) are often strongly indicative of how the object appears in the scene. Recognizing such contextual cues is useful not only to improve the accuracy of object detection or to determine the state of the object, but also to understand its functional properties and to infer ongoing or upcoming human-object interactions. A fully-supervised approach to recognizing object states and their contexts in the real-world is unfortunately marred by the long-tailed, open-ended distribution of the data, which would effectively require massive amounts of annotations to capture the appearance of objects in all their different forms. Instead of relying on manually-labeled data for this task, we propose a new framework for learning Contextualized OBject Embeddings (COBE) from automatically-transcribed narrations of instructional videos. We leverage the semantic and compositional structure of language by training a visual detector to predict a contextualized word embedding of the object and its associated narration. This enables the learning of an object representation where concepts relate according to a semantic language metric. Our experiments show that our detector learns to predict a rich variety of contextual object information, and that it is highly effective in the settings of few-shot and zero-shot learning.

Abstract (translated)

URL

https://arxiv.org/abs/2007.07306

PDF

https://arxiv.org/pdf/2007.07306.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot