Paper Reading AI Learner

NPCFace: A Negative-Positive Cooperation Supervision for Training Large-scale Face Recognition

2020-07-20 14:52:29
Dan Zeng, Hailin Shi, Hang Du, Jun Wang, Zhen Lei, Tao Mei

Abstract

Deep face recognition has made remarkable advances in the last few years, while the training scheme still remains challenging in the large-scale data situation where many hard cases occur. Especially in the range of low false accept rate (FAR), there are various hard cases in both positives ($\textit{i.e.}$ intra-class) and negatives ($\textit{i.e.}$ inter-class). In this paper, we study how to make better use of these hard samples for improving the training. The existing training methods deal with the challenge by adding margins in either the positive logit (such as SphereFace, CosFace, ArcFace) or the negative logit (such as MV-softmax, ArcNegFace, CurricularFace). However, the correlation between hard positive and hard negative is overlooked, as well as the relation between the margin in positive logit and the margin in negative logit. We find such correlation is significant, especially in the large-scale dataset, and one can take advantage from it to boost the training via relating the positive and negative margins for each training this http URL this end, we propose an explicit cooperation between positive and negative margins sample-wisely. Given a batch of hard samples, a novel Negative-Positive Cooperation loss, named NPCFace, is formulated, which emphasizes the training on both the negative and positive hard cases via a cooperative-margin mechanism in the softmax logits, and also brings better interpretation of negative-positive hardness correlation. Besides, the negative emphasis is implemented with an improved formulation to achieve stable convergence and flexible parameter setting.We validate the effectiveness of our approach on various benchmarks of large-scale face recognition and outperform the previous methods especially in the low FAR range.

Abstract (translated)

URL

https://arxiv.org/abs/2007.10172

PDF

https://arxiv.org/pdf/2007.10172.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot