Paper Reading AI Learner

Morphological Skip-Gram: Using morphological knowledge to improve word representation

2020-07-20 12:47:36
Flávio Santos, Hendrik Macedo, Thiago Bispo, Cleber Zanchetting

Abstract

Natural language processing models have attracted much interest in the deep learning community. This branch of study is composed of some applications such as machine translation, sentiment analysis, named entity recognition, question and answer, and others. Word embeddings are continuous word representations, they are an essential module for those applications and are generally used as input word representation to the deep learning models. Word2Vec and GloVe are two popular methods to learn word embeddings. They achieve good word representations, however, they learn representations with limited information because they ignore the morphological information of the words and consider only one representation vector for each word. This approach implies that Word2Vec and GloVe are unaware of the word inner structure. To mitigate this problem, the FastText model represents each word as a bag of characters n-grams. Hence, each n-gram has a continuous vector representation, and the final word representation is the sum of its characters n-grams vectors. Nevertheless, the use of all n-grams character of a word is a poor approach since some n-grams have no semantic relation with their words and increase the amount of potentially useless information. This approach also increases the training phase time. In this work, we propose a new method for training word embeddings, and its goal is to replace the FastText bag of character n-grams for a bag of word morphemes through the morphological analysis of the word. Thus, words with similar context and morphemes are represented by vectors close to each other. To evaluate our new approach, we performed intrinsic evaluations considering 15 different tasks, and the results show a competitive performance compared to FastText.

Abstract (translated)

URL

https://arxiv.org/abs/2007.10055

PDF

https://arxiv.org/pdf/2007.10055.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot