Paper Reading AI Learner

End-to-End Trainable Deep Active Contour Models for Automated Image Segmentation: Delineating Buildings in Aerial Imagery

2020-07-22 21:27:17
Ali Hatamizadeh, Debleena Sengupta, Demetri Terzopoulos

Abstract

The automated segmentation of buildings in remote sensing imagery is a challenging task that requires the accurate delineation of multiple building instances over typically large image areas. Manual methods are often laborious and current deep-learning-based approaches fail to delineate all building instances and do so with adequate accuracy. As a solution, we present Trainable Deep Active Contours (TDACs), an automatic image segmentation framework that intimately unites Convolutional Neural Networks (CNNs) and Active Contour Models (ACMs). The Eulerian energy functional of the ACM component includes per-pixel parameter maps that are predicted by the backbone CNN, which also initializes the ACM. Importantly, both the ACM and CNN components are fully implemented in TensorFlow and the entire TDAC architecture is end-to-end automatically differentiable and backpropagation trainable without user intervention. TDAC yields fast, accurate, and fully automatic simultaneous delineation of arbitrarily many buildings in the image. We validate the model on two publicly available aerial image datasets for building segmentation, and our results demonstrate that TDAC establishes a new state-of-the-art performance.

Abstract (translated)

URL

https://arxiv.org/abs/2007.11691

PDF

https://arxiv.org/pdf/2007.11691.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot