Paper Reading AI Learner

Point-to-set distance functions for weakly supervised segmentation


Abstract

When pixel-level masks or partial annotations are not available for training neural networks for semantic segmentation, it is possible to use higher-level information in the form of bounding boxes, or image tags. In the imaging sciences, many applications do not have an object-background structure and bounding boxes are not available. Any available annotation typically comes from ground truth or domain experts. A direct way to train without masks is using prior knowledge on the size of objects/classes in the segmentation. We present a new algorithm to include such information via constraints on the network output, implemented via projection-based point-to-set distance functions. This type of distance functions always has the same functional form of the derivative, and avoids the need to adapt penalty functions to different constraints, as well as issues related to constraining properties typically associated with non-differentiable functions. Whereas object size information is known to enable object segmentation from bounding boxes from datasets with many general and medical images, we show that the applications extend to the imaging sciences where data represents indirect measurements, even in the case of single examples. We illustrate the capabilities in case of a) one or more classes do not have any annotation; b) there is no annotation at all; c) there are bounding boxes. We use data for hyperspectral time-lapse imaging, object segmentation in corrupted images, and sub-surface aquifer mapping from airborne-geophysical remote-sensing data. The examples verify that the developed methodology alleviates difficulties with annotating non-visual imagery for a range of experimental settings.

Abstract (translated)

URL

https://arxiv.org/abs/2007.13251

PDF

https://arxiv.org/pdf/2007.13251.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot