Paper Reading AI Learner

Force myography benchmark data for hand gesture recognition and transfer learning

2020-07-29 15:43:59
Thomas Buhl Andersen, Rógvi Eliasen, Mikkel Jarlund, Bin Yang

Abstract

tract: Force myography has recently gained increasing attention for hand gesture recognition tasks. However, there is a lack of publicly available benchmark data, with most existing studies collecting their own data often with custom hardware and for varying sets of gestures. This limits the ability to compare various algorithms, as well as the possibility for research to be done without first needing to collect data oneself. We contribute to the advancement of this field by making accessible a benchmark dataset collected using a commercially available sensor setup from 20 persons covering 18 unique gestures, in the hope of allowing further comparison of results as well as easier entry into this field of research. We illustrate one use-case for such data, showing how we can improve gesture recognition accuracy by utilising transfer learning to incorporate data from multiple other persons. This also illustrates that the dataset can serve as a benchmark dataset to facilitate research on transfer learning algorithms.

Abstract (translated)

URL

https://arxiv.org/abs/2007.14918

PDF

https://arxiv.org/pdf/2007.14918


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot