Paper Reading AI Learner

An Inter-Layer Weight Prediction and Quantization for Deep Neural Networks based on a Smoothly Varying Weight Hypothesis

2020-08-20 02:32:12
Kang-Ho Lee, JoonHyun Jeong, Sung-Ho Bae

Abstract

Due to a resource-constrained environment, network compression has become an important part of deep neural networks research. In this paper, we propose a new compression method, \textit{Inter-Layer Weight Prediction} (ILWP) and quantization method which quantize the predicted residuals between the weights in all convolution layers based on an inter-frame prediction method in conventional video coding schemes. Furthermore, we found a phenomenon \textit{Smoothly Varying Weight Hypothesis} (SVWH) which is that the weights in adjacent convolution layers share strong similarity in shapes and values, i.e., the weights tend to vary smoothly along with the layers. Based on SVWH, we propose a second ILWP and quantization method which quantize the predicted residuals between the weights in adjacent convolution layers. Since the predicted weight residuals tend to follow Laplace distributions with very low variance, the weight quantization can more effectively be applied, thus producing more zero weights and enhancing the weight compression ratio. In addition, we propose a new \textit{inter-layer loss} for eliminating non-texture bits, which enabled us to more effectively store only texture bits. That is, the proposed loss regularizes the weights such that the collocated weights between the adjacent two layers have the same values. Finally, we propose an ILWP with an inter-layer loss and quantization method. Our comprehensive experiments show that the proposed method achieves a much higher weight compression rate at the same accuracy level compared with the previous quantization-based compression methods in deep neural networks.

Abstract (translated)

URL

https://arxiv.org/abs/1907.06835

PDF

https://arxiv.org/pdf/1907.06835.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot