Paper Reading AI Learner

Self-Competitive Neural Networks

2020-08-22 12:28:35
Iman Saberi, Fathiyeh Faghih

Abstract

Deep Neural Networks (DNNs) have improved the accuracy of classification problems in lots of applications. One of the challenges in training a DNN is its need to be fed by an enriched dataset to increase its accuracy and avoid it suffering from overfitting. One way to improve the generalization of DNNs is to augment the training data with new synthesized adversarial samples. Recently, researchers have worked extensively to propose methods for data augmentation. In this paper, we generate adversarial samples to refine the Domains of Attraction (DoAs) of each class. In this approach, at each stage, we use the model learned by the primary and generated adversarial data (up to that stage) to manipulate the primary data in a way that look complicated to the DNN. The DNN is then retrained using the augmented data and then it again generates adversarial data that are hard to predict for itself. As the DNN tries to improve its accuracy by competing with itself (generating hard samples and then learning them), the technique is called Self-Competitive Neural Network (SCNN). To generate such samples, we pose the problem as an optimization task, where the network weights are fixed and use a gradient descent based method to synthesize adversarial samples that are on the boundary of their true labels and the nearest wrong labels. Our experimental results show that data augmentation using SCNNs can significantly increase the accuracy of the original network. As an example, we can mention improving the accuracy of a CNN trained with 1000 limited training data of MNIST dataset from 94.26% to 98.25%.

Abstract (translated)

URL

https://arxiv.org/abs/2008.09824

PDF

https://arxiv.org/pdf/2008.09824.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot