Paper Reading AI Learner

Affinity-aware Compression and Expansion Network for Human Parsing

2020-08-24 05:16:08
Xinyan Zhang, Yunfeng Wang, Pengfei Xiong

Abstract

As a fine-grained segmentation task, human parsing is still faced with two challenges: inter-part indistinction and intra-part inconsistency, due to the ambiguous definitions and confusing relationships between similar human parts. To tackle these two problems, this paper proposes a novel \textit{Affinity-aware Compression and Expansion} Network (ACENet), which mainly consists of two modules: Local Compression Module (LCM) and Global Expansion Module (GEM). Specifically, LCM compresses parts-correlation information through structural skeleton points, obtained from an extra skeleton branch. It can decrease the inter-part interference, and strengthen structural relationships between ambiguous parts. Furthermore, GEM expands semantic information of each part into a complete piece by incorporating the spatial affinity with boundary guidance, which can effectively enhance the semantic consistency of intra-part as well. ACENet achieves new state-of-the-art performance on the challenging LIP and Pascal-Person-Part datasets. In particular, 58.1% mean IoU is achieved on the LIP benchmark.

Abstract (translated)

URL

https://arxiv.org/abs/2008.10191

PDF

https://arxiv.org/pdf/2008.10191


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot