Paper Reading AI Learner

Label Decoupling Framework for Salient Object Detection

2020-08-25 14:23:38
Jun Wei, Shuhui Wang, Zhe Wu, Chi Su, Qingming Huang, Qi Tian

Abstract

To get more accurate saliency maps, recent methods mainly focus on aggregating multi-level features from fully convolutional network (FCN) and introducing edge information as auxiliary supervision. Though remarkable progress has been achieved, we observe that the closer the pixel is to the edge, the more difficult it is to be predicted, because edge pixels have a very imbalance distribution. To address this problem, we propose a label decoupling framework (LDF) which consists of a label decoupling (LD) procedure and a feature interaction network (FIN). LD explicitly decomposes the original saliency map into body map and detail map, where body map concentrates on center areas of objects and detail map focuses on regions around edges. Detail map works better because it involves much more pixels than traditional edge supervision. Different from saliency map, body map discards edge pixels and only pays attention to center areas. This successfully avoids the distraction from edge pixels during training. Therefore, we employ two branches in FIN to deal with body map and detail map respectively. Feature interaction (FI) is designed to fuse the two complementary branches to predict the saliency map, which is then used to refine the two branches again. This iterative refinement is helpful for learning better representations and more precise saliency maps. Comprehensive experiments on six benchmark datasets demonstrate that LDF outperforms state-of-the-art approaches on different evaluation metrics.

Abstract (translated)

URL

https://arxiv.org/abs/2008.11048

PDF

https://arxiv.org/pdf/2008.11048.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot