Paper Reading AI Learner

Optimising AI Training Deployments using Graph Compilers and Containers

2020-08-26 16:58:32
Nina Mujkanovic, Karthee Sivalingam, Alfio Lazzaro

Abstract

Artificial Intelligence (AI) applications based on Deep Neural Networks (DNN) or Deep Learning (DL) have become popular due to their success in solving problems likeimage analysis and speech recognition. Training a DNN is computationally intensive and High Performance Computing(HPC) has been a key driver in AI growth. Virtualisation and container technology have led to the convergence of cloud and HPC infrastructure. These infrastructures with diverse hardware increase the complexity of deploying and optimising AI training workloads. AI training deployments in HPC or cloud can be optimised with target-specific libraries, graph compilers, andby improving data movement or IO. Graph compilers aim to optimise the execution of a DNN graph by generating an optimised code for a target hardware/backend. As part of SODALITE (a Horizon 2020 project), MODAK tool is developed to optimise application deployment in software defined infrastructures. Using input from the data scientist and performance modelling, MODAK maps optimal application parameters to a target infrastructure and builds an optimised container. In this paper, we introduce MODAK and review container technologies and graph compilers for AI. We illustrate optimisation of AI training deployments using graph compilers and Singularity containers. Evaluation using MNIST-CNN and ResNet50 training workloads shows that custom built optimised containers outperform the official images from DockerHub. We also found that the performance of graph compilers depends on the target hardware and the complexity of the neural network.

Abstract (translated)

URL

https://arxiv.org/abs/2008.11675

PDF

https://arxiv.org/pdf/2008.11675.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot