Paper Reading AI Learner

Temporal Action Localization with Variance-Aware Networks

2020-08-25 20:12:59
Ting-Ting Xie, Christos Tzelepis, Ioannis Patras

Abstract

This work addresses the problem of temporal action localization with Variance-Aware Networks (VAN), i.e., DNNs that use second-order statistics in the input and/or the output of regression tasks. We first propose a network (VANp) that when presented with the second-order statistics of the input, i.e., each sample has a mean and a variance, it propagates the mean and the variance throughout the network to deliver outputs with second order statistics. In this framework, both the input and the output could be interpreted as Gaussians. To do so, we derive differentiable analytic solutions, or reasonable approximations, to propagate across commonly used NN layers. To train the network, we define a differentiable loss based on the KL-divergence between the predicted Gaussian and a Gaussian around the ground truth action borders, and use standard back-propagation. Importantly, the variances propagation in VANp does not require any additional parameters, and during testing, does not require any additional computations either. In action localization, the means and the variances of the input are computed at pooling operations, that are typically used to bring arbitrarily long videos to a vector with fixed dimensions. Second, we propose two alternative formulations that augment the first (respectively, the last) layer of a regression network with additional parameters so as to take in the input (respectively, predict in the output) both means and variances. Results in the action localization problem show that the incorporation of second order statistics improves over the baseline network, and that VANp surpasses the accuracy of virtually all other two-stage networks without involving any additional parameters.

Abstract (translated)

URL

https://arxiv.org/abs/2008.11254

PDF

https://arxiv.org/pdf/2008.11254


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot