Paper Reading AI Learner

Selective Particle Attention: Visual Feature-Based Attention in Deep Reinforcement Learning

2020-08-26 11:07:50
Sam Blakeman, Denis Mareschal

Abstract

The human brain uses selective attention to filter perceptual input so that only the components that are useful for behaviour are processed using its limited computational resources. We focus on one particular form of visual attention known as feature-based attention, which is concerned with identifying features of the visual input that are important for the current task regardless of their spatial location. Visual feature-based attention has been proposed to improve the efficiency of Reinforcement Learning (RL) by reducing the dimensionality of state representations and guiding learning towards relevant features. Despite achieving human level performance in complex perceptual-motor tasks, Deep RL algorithms have been consistently criticised for their poor efficiency and lack of flexibility. Visual feature-based attention therefore represents one option for addressing these criticisms. Nevertheless, it is still an open question how the brain is able to learn which features to attend to during RL. To help answer this question we propose a novel algorithm, termed Selective Particle Attention (SPA), which imbues a Deep RL agent with the ability to perform selective feature-based attention. SPA learns which combinations of features to attend to based on their bottom-up saliency and how accurately they predict future reward. We evaluate SPA on a multiple choice task and a 2D video game that both involve raw pixel input and dynamic changes to the task structure. We show various benefits of SPA over approaches that naively attend to either all or random subsets of features. Our results demonstrate (1) how visual feature-based attention in Deep RL models can improve their learning efficiency and ability to deal with sudden changes in task structure and (2) that particle filters may represent a viable computational account of how visual feature-based attention occurs in the brain.

Abstract (translated)

URL

https://arxiv.org/abs/2008.11491

PDF

https://arxiv.org/pdf/2008.11491.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot