Paper Reading AI Learner

Efficient Framework for Learning Code Representations through Semantic-Preserving Program Transformations


Abstract

Recent learning techniques for the representation of code depend mostly on human-annotated (labeled) data. In this work, we are proposing Corder, a self-supervised learning system that can learn to represent code without having to label data. The key innovation is that we train the source code model by asking it to recognize similar and dissimilar code snippets through a contrastive learning paradigm. We use a set of semantic-preserving transformation operators to generate snippets that are syntactically diverse but semantically equivalent. The contrastive learning objective, at the same time, maximizes agreement between different views of the same snippets and minimizes agreement between transformed views of different snippets. We train different instances of Corder on 3 neural network encoders, which are Tree-based CNN, ASTNN, and Code2vec over 2.5 million unannotated Java methods mined from GitHub. Our result shows that the Corder pre-training improves code classification and method name prediction with large margins. Furthermore, the code vectors generated by Corder are adapted to code clustering which has been shown to significantly beat the other baselines.

Abstract (translated)

URL

https://arxiv.org/abs/2009.02731

PDF

https://arxiv.org/pdf/2009.02731.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot