Paper Reading AI Learner

Quantifying Explainability of Saliency Methods in Deep Neural Networks

2020-09-07 05:55:24
Erico Tjoa, Cuntai Guan

Abstract

One way to achieve eXplainable artificial intelligence (XAI) is through the use of post-hoc analysis methods. In particular, methods that generate heatmaps have been used to explain black-box models, such as deep neural network. In some cases, heatmaps are appealing due to the intuitive and visual ways to understand them. However, quantitative analysis that demonstrates the actual potential of heatmaps have been lacking, and comparison between different methods are not standardized as well. In this paper, we introduce a synthetic data that can be generated adhoc along with the ground-truth heatmaps for better quantitative assessment. Each sample data is an image of a cell with easily distinguishable features, facilitating a more transparent assessment of different XAI methods. Comparison and recommendations are made, shortcomings are clarified along with suggestions for future research directions to handle the finer details of select post-hoc analysis methods.

Abstract (translated)

URL

https://arxiv.org/abs/2009.02899

PDF

https://arxiv.org/pdf/2009.02899.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot