Paper Reading AI Learner

Analysis of Models for Decentralized and Collaborative AI on Blockchain

2020-09-14 21:38:55
Justin D. Harris

Abstract

Machine learning has recently enabled large advances in artificial intelligence, but these results can be highly centralized. The large datasets required are generally proprietary; predictions are often sold on a per-query basis; and published models can quickly become out of date without effort to acquire more data and maintain them. Published proposals to provide models and data for free for certain tasks include Microsoft Research's Decentralized and Collaborative AI on Blockchain. The framework allows participants to collaboratively build a dataset and use smart contracts to share a continuously updated model on a public blockchain. The initial proposal gave an overview of the framework omitting many details of the models used and the incentive mechanisms in real world scenarios. In this work, we evaluate the use of several models and configurations in order to propose best practices when using the Self-Assessment incentive mechanism so that models can remain accurate and well-intended participants that submit correct data have the chance to profit. We have analyzed simulations for each of three models: Perceptron, Naïve Bayes, and a Nearest Centroid Classifier, with three different datasets: predicting a sport with user activity from Endomondo, sentiment analysis on movie reviews from IMDB, and determining if a news article is fake. We compare several factors for each dataset when models are hosted in smart contracts on a public blockchain: their accuracy over time, balances of a good and bad user, and transaction costs (or gas) for deploying, updating, collecting refunds, and collecting rewards. A free and open source implementation for the Ethereum blockchain and simulations written in Python is provided at this https URL. This version has updated gas costs using newer optimizations written after the original publication.

Abstract (translated)

URL

https://arxiv.org/abs/2009.06756

PDF

https://arxiv.org/pdf/2009.06756.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot