Paper Reading AI Learner

Making Images Undiscoverable from Co-Saliency Detection

2020-09-19 15:43:46
Ruijun Gao, Qing Guo, Felix Juefei-Xu, Hongkai Yu, Xuhong Ren, Wei Feng, Song Wang

Abstract

In recent years, co-saliency object detection (CoSOD) has achieved significant progress and played a key role in the retrieval-related tasks, e.g., image retrieval and video foreground detection. Nevertheless, it also inevitably posts a totally new safety and security problem, i.e., how to prevent high-profile and personal-sensitive contents from being extracted by the powerful CoSOD methods. In this paper, we address this problem from the perspective of adversarial attack and identify a novel task, i.e., adversarial co-saliency attack: given an image selected from an image group containing some common and salient objects, how to generate an adversarial version that can mislead CoSOD methods to predict incorrect co-salient regions. Note that, compared with general adversarial attacks for classification, this new task introduces two extra challenges for existing whitebox adversarial noise attacks: (1) low success rate due to the diverse appearance of images in the image group; (2) low transferability across CoSOD methods due to the considerable difference between CoSOD pipelines. To address these challenges, we propose the very first blackbox joint adversarial exposure & noise attack (Jadena) where we jointly and locally tune the exposure and additive perturbations of the image according to a newly designed high-feature-level contrast-sensitive loss function. Our method, without any information of the state-of-the-art CoSOD methods, leads to significant performance degradation on various co-saliency detection datasets and make the co-salient objects undetectable, which can be strongly practical in nowadays where large-scale personal photos are shared on the internet and should be properly and securely preserved.

Abstract (translated)

URL

https://arxiv.org/abs/2009.09258

PDF

https://arxiv.org/pdf/2009.09258.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot