Paper Reading AI Learner

GSR-Net: Graph Super-Resolution Network for Predicting High-Resolution from Low-Resolution Functional Brain Connectomes

2020-09-23 12:02:55
Megi Isallari, Islem Rekik

Abstract

Catchy but rigorous deep learning architectures were tailored for image super-resolution (SR), however, these fail to generalize to non-Euclidean data such as brain connectomes. Specifically, building generative models for super-resolving a low-resolution (LR) brain connectome at a higher resolution (HR) (i.e., adding new graph nodes/edges) remains unexplored although this would circumvent the need for costly data collection and manual labelling of anatomical brain regions (i.e. parcellation). To fill this gap, we introduce GSR-Net (Graph Super-Resolution Network), the first super-resolution framework operating on graph-structured data that generates high-resolution brain graphs from low-resolution graphs. First, we adopt a U-Net like architecture based on graph convolution, pooling and unpooling operations specific to non-Euclidean data. However, unlike conventional U-Nets where graph nodes represent samples and node features are mapped to a low-dimensional space (encoding and decoding node attributes or sample features), our GSR-Net operates directly on a single connectome: a fully connected graph where conventionally, a node denotes a brain region, nodes have no features, and edge weights denote brain connectivity strength between two regions of interest (ROIs). In the absence of original node features, we initially assign identity feature vectors to each brain ROI (node) and then leverage the learned local receptive fields to learn node feature representations. Second, inspired by spectral theory, we break the symmetry of the U-Net architecture by topping it up with a graph super-resolution (GSR) layer and two graph convolutional network layers to predict a HR graph while preserving the characteristics of the LR input. Our proposed GSR-Net framework outperformed its variants for predicting high-resolution brain functional connectomes from low-resolution connectomes.

Abstract (translated)

URL

https://arxiv.org/abs/2009.11080

PDF

https://arxiv.org/pdf/2009.11080.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot