Paper Reading AI Learner

Multi-View Brain HyperConnectome AutoEncoder For Brain State Classification

2020-09-24 08:51:44
Alin Banka, Inis Buzi, Islem Rekik

Abstract

Graph embedding is a powerful method to represent graph neurological data (e.g., brain connectomes) in a low dimensional space for brain connectivity mapping, prediction and classification. However, existing embedding algorithms have two major limitations. First, they primarily focus on preserving one-to-one topological relationships between nodes (i.e., regions of interest (ROIs) in a connectome), but they have mostly ignored many-to-many relationships (i.e., set to set), which can be captured using a hyperconnectome structure. Second, existing graph embedding techniques cannot be easily adapted to multi-view graph data with heterogeneous distributions. In this paper, while cross-pollinating adversarial deep learning with hypergraph theory, we aim to jointly learn deep latent embeddings of subject0specific multi-view brain graphs to eventually disentangle different brain states. First, we propose a new simple strategy to build a hyperconnectome for each brain view based on nearest neighbour algorithm to preserve the connectivities across pairs of ROIs. Second, we design a hyperconnectome autoencoder (HCAE) framework which operates directly on the multi-view hyperconnectomes based on hypergraph convolutional layers to better capture the many-to-many relationships between brain regions (i.e., nodes). For each subject, we further regularize the hypergraph autoencoding by adversarial regularization to align the distribution of the learned hyperconnectome embeddings with that of the input hyperconnectomes. We formalize our hyperconnectome embedding within a geometric deep learning framework to optimize for a given subject, thereby designing an individual-based learning framework. Our experiments showed that the learned embeddings by HCAE yield to better results for brain state classification compared with other deep graph embedding methods methods.

Abstract (translated)

URL

https://arxiv.org/abs/2009.11553

PDF

https://arxiv.org/pdf/2009.11553.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot