Paper Reading AI Learner

Semi-Supervised Learning for In-Game Expert-Level Music-to-Dance Translation

2020-09-27 07:08:04
Yinglin Duan (1), Tianyang Shi (1), Zhengxia Zou (2), Jia Qin (1 and 3), Yifei Zhao (1), Yi Yuan (1), Jie Hou (1), Xiang Wen (1 and 3), Changjie Fan (1) ((1) NetEase Fuxi AI Lab, (2) University of Michigan, Ann Arbor, (3) Zhejiang University)

Abstract

Music-to-dance translation is a brand-new and powerful feature in recent role-playing games. Players can now let their characters dance along with specified music clips and even generate fan-made dance videos. Previous works of this topic consider music-to-dance as a supervised motion generation problem based on time-series data. However, these methods suffer from limited training data pairs and the degradation of movements. This paper provides a new perspective for this task where we re-formulate the translation problem as a piece-wise dance phrase retrieval problem based on the choreography theory. With such a design, players are allowed to further edit the dance movements on top of our generation while other regression based methods ignore such user interactivity. Considering that the dance motion capture is an expensive and time-consuming procedure which requires the assistance of professional dancers, we train our method under a semi-supervised learning framework with a large unlabeled dataset (20x than labeled data) collected. A co-ascent mechanism is introduced to improve the robustness of our network. Using this unlabeled dataset, we also introduce self-supervised pre-training so that the translator can understand the melody, rhythm, and other components of music phrases. We show that the pre-training significantly improves the translation accuracy than that of training from scratch. Experimental results suggest that our method not only generalizes well over various styles of music but also succeeds in expert-level choreography for game players.

Abstract (translated)

URL

https://arxiv.org/abs/2009.12763

PDF

https://arxiv.org/pdf/2009.12763.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot