Paper Reading AI Learner

An Empirical Study of DNNs Robustification Inefficacy in Protecting Visual Recommenders

2020-10-02 13:29:41
Vito Walter Anelli, Tommaso Di Noia, Daniele Malitesta, Felice Antonio Merra

Abstract

Visual-based recommender systems (VRSs) enhance recommendation performance by integrating users' feedback with the visual features of product images extracted from a deep neural network (DNN). Recently, human-imperceptible images perturbations, defined \textit{adversarial attacks}, have been demonstrated to alter the VRSs recommendation performance, e.g., pushing/nuking category of products. However, since adversarial training techniques have proven to successfully robustify DNNs in preserving classification accuracy, to the best of our knowledge, two important questions have not been investigated yet: 1) How well can these defensive mechanisms protect the VRSs performance? 2) What are the reasons behind ineffective/effective defenses? To answer these questions, we define a set of defense and attack settings, as well as recommender models, to empirically investigate the efficacy of defensive mechanisms. The results indicate alarming risks in protecting a VRS through the DNN robustification. Our experiments shed light on the importance of visual features in very effective attack scenarios. Given the financial impact of VRSs on many companies, we believe this work might rise the need to investigate how to successfully protect visual-based recommenders. Source code and data are available at https://anonymous.4open.science/r/868f87ca-c8a4-41ba-9af9-20c41de33029/.

Abstract (translated)

URL

https://arxiv.org/abs/2010.00984

PDF

https://arxiv.org/pdf/2010.00984.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot