Paper Reading AI Learner

Sentiment Analysis for Reinforcement Learning

2020-10-05 20:15:51
Ameet Deshpande, Eve Fleisig

Abstract

While reinforcement learning (RL) has been successful in natural language processing (NLP) domains such as dialogue generation and text-based games, it typically faces the problem of sparse rewards that leads to slow or no convergence. Traditional methods that use text descriptions to extract only a state representation ignore the feedback inherently present in them. In text-based games, for example, descriptions like "Good Job! You ate the food}" indicate progress, and descriptions like "You entered a new room" indicate exploration. Positive and negative cues like these can be converted to rewards through sentiment analysis. This technique converts the sparse reward problem into a dense one, which is easier to solve. Furthermore, this can enable reinforcement learning without rewards, in which the agent learns entirely from these intrinsic sentiment rewards. This framework is similar to intrinsic motivation, where the environment does not necessarily provide the rewards, but the agent analyzes and realizes them by itself. We find that providing dense rewards in text-based games using sentiment analysis improves performance under some conditions.

Abstract (translated)

URL

https://arxiv.org/abs/2010.02316

PDF

https://arxiv.org/pdf/2010.02316.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot