Paper Reading AI Learner

A Series of Unfortunate Counterfactual Events: the Role of Time in Counterfactual Explanations

2020-10-09 17:16:29
Andrea Ferrario, Michele Loi

Abstract

Counterfactual explanations are a prominent example of post-hoc interpretability methods in the explainable Artificial Intelligence research domain. They provide individuals with alternative scenarios and a set of recommendations to achieve a sought-after machine learning model outcome. Recently, the literature has identified desiderata of counterfactual explanations, such as feasibility, actionability and sparsity that should support their applicability in real-world contexts. However, we show that the literature has neglected the problem of the time dependency of counterfactual explanations. We argue that, due to their time dependency and because of the provision of recommendations, even feasible, actionable and sparse counterfactual explanations may not be appropriate in real-world applications. This is due to the possible emergence of what we call "unfortunate counterfactual events." These events may occur due to the retraining of machine learning models whose outcomes have to be explained via counterfactual explanation. Series of unfortunate counterfactual events frustrate the efforts of those individuals who successfully implemented the recommendations of counterfactual explanations. This negatively affects people's trust in the ability of institutions to provide machine learning-supported decisions consistently. We introduce an approach to address the problem of the emergence of unfortunate counterfactual events that makes use of histories of counterfactual explanations. In the final part of the paper we propose an ethical analysis of two distinct strategies to cope with the challenge of unfortunate counterfactual events. We show that they respond to an ethically responsible imperative to preserve the trustworthiness of credit lending organizations, the decision models they employ, and the social-economic function of credit lending.

Abstract (translated)

URL

https://arxiv.org/abs/2010.04687

PDF

https://arxiv.org/pdf/2010.04687.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot