Paper Reading AI Learner

Weaponizing Unicodes with Deep Learning -- Identifying Homoglyphs with Weakly Labeled Data

2020-10-09 06:03:18
Perry Deng, Cooper Linsky, Matthew Wright

Abstract

Visually similar characters, or homoglyphs, can be used to perform social engineering attacks or to evade spam and plagiarism detectors. It is thus important to understand the capabilities of an attacker to identify homoglyphs -- particularly ones that have not been previously spotted -- and leverage them in attacks. We investigate a deep-learning model using embedding learning, transfer learning, and augmentation to determine the visual similarity of characters and thereby identify potential homoglyphs. Our approach uniquely takes advantage of weak labels that arise from the fact that most characters are not homoglyphs. Our model drastically outperforms the Normalized Compression Distance approach on pairwise homoglyph identification, for which we achieve an average precision of 0.97. We also present the first attempt at clustering homoglyphs into sets of equivalence classes, which is more efficient than pairwise information for security practitioners to quickly lookup homoglyphs or to normalize confusable string encodings. To measure clustering performance, we propose a metric (mBIOU) building on the classic Intersection-Over-Union (IOU) metric. Our clustering method achieves 0.592 mBIOU, compared to 0.430 for the naive baseline. We also use our model to predict over 8,000 previously unknown homoglyphs, and find good early indications that many of these may be true positives. Source code and list of predicted homoglyphs are uploaded to Github: this https URL

Abstract (translated)

URL

https://arxiv.org/abs/2010.04382

PDF

https://arxiv.org/pdf/2010.04382.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot