Paper Reading AI Learner

Land Cover Semantic Segmentation Using ResUNet

2020-10-13 10:56:09
Vasilis Pollatos, Loukas Kouvaras, Eleni Charou

Abstract

In this paper we present our work on developing an automated system for land cover classification. This system takes a multiband satellite image of an area as input and outputs the land cover map of the area at the same resolution as the input. For this purpose convolutional machine learning models were trained in the task of predicting the land cover semantic segmentation of satellite images. This is a case of supervised learning. The land cover label data were taken from the CORINE Land Cover inventory and the satellite images were taken from the Copernicus hub. As for the model, U-Net architecture variations were applied. Our area of interest are the Ionian islands (Greece). We created a dataset from scratch covering this particular area. In addition, transfer learning from the BigEarthNet dataset [1] was performed. In [1] simple classification of satellite images into the classes of CLC is performed but not segmentation as we do. However, their models have been trained into a dataset much bigger than ours, so we applied transfer learning using their pretrained models as the first part of out network, utilizing the ability these networks have developed to extract useful features from the satellite images (we transferred a pretrained ResNet50 into a U-Res-Net). Apart from transfer learning other techniques were applied in order to overcome the limitations set by the small size of our area of interest. We used data augmentation (cutting images into overlapping patches, applying random transformations such as rotations and flips) and cross validation. The results are tested on the 3 CLC class hierarchy levels and a comparative study is made on the results of different approaches.

Abstract (translated)

URL

https://arxiv.org/abs/2010.06285

PDF

https://arxiv.org/pdf/2010.06285.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot