Paper Reading AI Learner

Learning to Deceive Knowledge Graph Augmented Models via Targeted Perturbation

2020-10-24 11:04:45
Mrigank Raman, Siddhant Agarwal, Peifeng Wang, Aaron Chan, Hansen Wang, Sungchul Kim, Ryan Rossi, Handong Zhao, Nedim Lipka, Xiang Ren

Abstract

Symbolic knowledge (e.g., entities, relations, and facts in a knowledge graph) has become an increasingly popular component of neural-symbolic models applied to machine learning tasks, such as question answering and recommender systems. Besides improving downstream performance, these symbolic structures (and their associated attention weights) are often used to help explain the model's predictions and provide "insights" to practitioners. In this paper, we question the faithfulness of such symbolic explanations. We demonstrate that, through a learned strategy (or even simple heuristics), one can produce deceptively perturbed symbolic structures which maintain the downstream performance of the original structure while significantly deviating from the original semantics. In particular, we train a reinforcement learning policy to manipulate relation types or edge connections in a knowledge graph, such that the resulting downstream performance is maximally preserved. Across multiple models and tasks, our approach drastically alters knowledge graphs with little to no drop in performance. These results raise doubts about the faithfulness of explanations provided by learned symbolic structures and the reliability of current neural-symbolic models in leveraging symbolic knowledge.

Abstract (translated)

URL

https://arxiv.org/abs/2010.12872

PDF

https://arxiv.org/pdf/2010.12872.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot