Paper Reading AI Learner

Implementing efficient balanced networks with mixed-signal spike-based learning circuits

2020-10-27 15:05:51
Julian Büchel, Jonathan Kakon, Michel Perez, Giacomo Indiveri

Abstract

Efficient Balanced Networks (EBNs) are networks of spiking neurons in which excitatory and inhibitory synaptic currents are balanced on a short timescale, leading to desirable coding properties such as high encoding precision, low firing rates, and distributed information representation. It is for these benefits that it would be desirable to implement such networks in low-power neuromorphic processors. However, the degree of device mismatch in analog mixed-signal neuromorphic circuits renders the use of pre-trained EBNs challenging, if not impossible. To overcome this issue, we developed a novel local learning rule suitable for on-chip implementation that drives a randomly connected network of spiking neurons into a tightly balanced regime. Here we present the integrated circuits that implement this rule and demonstrate their expected behaviour in low-level circuit simulations. Our proposed method paves the way towards a system-level implementation of tightly balanced networks on analog mixed-signal neuromorphic hardware. Thanks to their coding properties and sparse activity, neuromorphic electronic EBNs will be ideally suited for extreme-edge computing applications that require low-latency, ultra-low power consumption and which cannot rely on cloud computing for data processing.

Abstract (translated)

URL

https://arxiv.org/abs/2010.14353

PDF

https://arxiv.org/pdf/2010.14353.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot