Paper Reading AI Learner

Assured Autonomy: Path Toward Living With Autonomous Systems We Can Trust

2020-10-27 17:00:01
Ufuk Topcu, Nadya Bliss, Nancy Cooke, Missy Cummings, Ashley Llorens, Howard Shrobe, Lenore Zuck

Abstract

The challenge of establishing assurance in autonomy is rapidly attracting increasing interest in the industry, government, and academia. Autonomy is a broad and expansive capability that enables systems to behave without direct control by a human operator. To that end, it is expected to be present in a wide variety of systems and applications. A vast range of industrial sectors, including (but by no means limited to) defense, mobility, health care, manufacturing, and civilian infrastructure, are embracing the opportunities in autonomy yet face the similar barriers toward establishing the necessary level of assurance sooner or later. Numerous government agencies are poised to tackle the challenges in assured autonomy. Given the already immense interest and investment in autonomy, a series of workshops on Assured Autonomy was convened to facilitate dialogs and increase awareness among the stakeholders in the academia, industry, and government. This series of three workshops aimed to help create a unified understanding of the goals for assured autonomy, the research trends and needs, and a strategy that will facilitate sustained progress in autonomy. The first workshop, held in October 2019, focused on current and anticipated challenges and problems in assuring autonomous systems within and across applications and sectors. The second workshop held in February 2020, focused on existing capabilities, current research, and research trends that could address the challenges and problems identified in workshop. The third event was dedicated to a discussion of a draft of the major findings from the previous two workshops and the recommendations.

Abstract (translated)

URL

https://arxiv.org/abs/2010.14443

PDF

https://arxiv.org/pdf/2010.14443.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot