Paper Reading AI Learner

Self-Supervised Video Representation Using Pretext-Contrastive Learning

2020-10-29 10:20:35
Li Tao, Xueting Wang, Toshihiko Yamasaki

Abstract

Pretext tasks and contrastive learning have been successful in self-supervised learning for video retrieval and recognition. In this study, we analyze their optimization targets and utilize the hyper-sphere feature space to explore the connections between them, indicating the compatibility and consistency of these two different learning methods. Based on the analysis, we propose a self-supervised training method, referred as Pretext-Contrastive Learning (PCL), to learn video representations. Extensive experiments based on different combinations of pretext task baselines and contrastive losses confirm the strong agreement with their self-supervised learning targets, demonstrating the effectiveness and the generality of PCL. The combination of pretext tasks and contrastive losses showed significant improvements in both video retrieval and recognition over the corresponding baselines. And we can also outperform current state-of-the-art methods in the same manner. Further, our PCL is flexible and can be applied to almost all existing pretext task methods.

Abstract (translated)

URL

https://arxiv.org/abs/2010.15464

PDF

https://arxiv.org/pdf/2010.15464.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot