Paper Reading AI Learner

Learning Deep Interleaved Networks with Asymmetric Co-Attention for Image Restoration

2020-10-29 15:32:00
Feng Li, Runmin Cong, Huihui Bai, Yifan He, Yao Zhao, Ce Zhu

Abstract

Recently, convolutional neural network (CNN) has demonstrated significant success for image restoration (IR) tasks (e.g., image super-resolution, image deblurring, rain streak removal, and dehazing). However, existing CNN based models are commonly implemented as a single-path stream to enrich feature representations from low-quality (LQ) input space for final predictions, which fail to fully incorporate preceding low-level contexts into later high-level features within networks, thereby producing inferior results. In this paper, we present a deep interleaved network (DIN) that learns how information at different states should be combined for high-quality (HQ) images reconstruction. The proposed DIN follows a multi-path and multi-branch pattern allowing multiple interconnected branches to interleave and fuse at different states. In this way, the shallow information can guide deep representative features prediction to enhance the feature expression ability. Furthermore, we propose asymmetric co-attention (AsyCA) which is attached at each interleaved node to model the feature dependencies. Such AsyCA can not only adaptively emphasize the informative features from different states, but also improves the discriminative ability of networks. Our presented DIN can be trained end-to-end and applied to various IR tasks. Comprehensive evaluations on public benchmarks and real-world datasets demonstrate that the proposed DIN perform favorably against the state-of-the-art methods quantitatively and qualitatively.

Abstract (translated)

URL

https://arxiv.org/abs/2010.15689

PDF

https://arxiv.org/pdf/2010.15689.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot