Paper Reading AI Learner

Pushing the Envelope of Rotation Averaging for Visual SLAM

2020-11-02 18:02:26
Xinyi Li, Lin Yuan, Longin Jan Latecki, Haibin Ling

Abstract

As an essential part of structure from motion (SfM) and Simultaneous Localization and Mapping (SLAM) systems, motion averaging has been extensively studied in the past years and continues to attract surging research attention. While canonical approaches such as bundle adjustment are predominantly inherited in most of state-of-the-art SLAM systems to estimate and update the trajectory in the robot navigation, the practical implementation of bundle adjustment in SLAM systems is intrinsically limited by the high computational complexity, unreliable convergence and strict requirements of ideal initializations. In this paper, we lift these limitations and propose a novel optimization backbone for visual SLAM systems, where we leverage rotation averaging to improve the accuracy, efficiency and robustness of conventional monocular SLAM pipelines. In our approach, we first decouple the rotational and translational parameters in the camera rigid body transformation and convert the high-dimensional non-convex nonlinear problem into tractable linear subproblems in lower dimensions, and show that the subproblems can be solved independently with proper constraints. We apply the scale parameter with $l_1$-norm in the pose-graph optimization to address the rotation averaging robustness against outliers. We further validate the global optimality of our proposed approach, revisit and address the initialization schemes, pure rotational scene handling and outlier treatments. We demonstrate that our approach can exhibit up to 10x faster speed with comparable accuracy against the state of the art on public benchmarks.

Abstract (translated)

URL

https://arxiv.org/abs/2011.01163

PDF

https://arxiv.org/pdf/2011.01163.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot