Paper Reading AI Learner

Robust ENF Estimation Based on Harmonic Enhancement and Maximum Weight Clique

2020-11-06 15:10:08
Guang Hua, Han Liao, Haijian Zhang, Dengpan Ye, Jiayi Ma

Abstract

We present a framework for robust electric network frequency (ENF) extraction from real-world audio recordings, featuring multi-tone ENF harmonic enhancement and graph-based optimal harmonic selection. Specifically, We first extend the recently developed single-tone ENF signal enhancement method to the multi-tone scenario and propose a harmonic robust filtering algorithm (HRFA). It can respectively enhance each harmonic component without cross-component interference, thus further alleviating the effects of unwanted noise and audio content on the much weaker ENF signal. In addition, considering the fact that some harmonic components could be severely corrupted even after enhancement, disturbing rather than facilitating ENF estimation, we propose a graph-based harmonic selection algorithm (GHSA), which finds the optimal combination of harmonic components for more accurate ENF estimation. Noticeably, the harmonic selection problem is equivalently formulated as a maximum weight clique (MWC) problem in graph theory, and the Bron-Kerbosch algorithm (BKA) is adopted in the GHSA. With the enhanced and optimally selected harmonic components, both the existing maximum likelihood estimator (MLE) and weighted MLE (WMLE) are incorporated to yield the final ENF estimation results. The proposed framework is extensively evaluated using both synthetic signals and our ENF-WHU dataset consisting of $130$ real-world audio recordings, demonstrating substantially improved capability of extracting the ENF from realistically noisy observations over the existing single- and multi-tone competitors. This work further improves the applicability of the ENF as a forensic criterion in real-world situations.

Abstract (translated)

URL

https://arxiv.org/abs/2011.03414

PDF

https://arxiv.org/pdf/2011.03414.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot