Paper Reading AI Learner

VStreamDRLS: Dynamic Graph Representation Learning with Self-Attention for Enterprise Distributed Video Streaming Solutions

2020-11-11 10:00:12
Stefanos Antaris, Dimitrios Rafailidis

Abstract

Live video streaming has become a mainstay as a standard communication solution for several enterprises worldwide. To efficiently stream high-quality live video content to a large amount of offices, companies employ distributed video streaming solutions which rely on prior knowledge of the underlying evolving enterprise network. However, such networks are highly complex and dynamic. Hence, to optimally coordinate the live video distribution, the available network capacity between viewers has to be accurately predicted. In this paper we propose a graph representation learning technique on weighted and dynamic graphs to predict the network capacity, that is the weights of connections/links between viewers/nodes. We propose VStreamDRLS, a graph neural network architecture with a self-attention mechanism to capture the evolution of the graph structure of live video streaming events. VStreamDRLS employs the graph convolutional network (GCN) model over the duration of a live video streaming event and introduces a self-attention mechanism to evolve the GCN parameters. In doing so, our model focuses on the GCN weights that are relevant to the evolution of the graph and generate the node representation, accordingly. We evaluate our proposed approach on the link prediction task on two real-world datasets, generated by enterprise live video streaming events. The duration of each event lasted an hour. The experimental results demonstrate the effectiveness of VStreamDRLS when compared with state-of-the-art strategies. Our evaluation datasets and implementation are publicly available at this https URL

Abstract (translated)

URL

https://arxiv.org/abs/2011.05671

PDF

https://arxiv.org/pdf/2011.05671.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot