Paper Reading AI Learner

Filter Pre-Pruning for Improved Fine-tuning of Quantized Deep Neural Networks

2020-11-13 04:12:54
Jun Nishikawa, Ryoji Ikegaya

Abstract

Deep Neural Networks(DNNs) have many parameters and activation data, and these both are expensive to implement. One method to reduce the size of the DNN is to quantize the pre-trained model by using a low-bit expression for weights and activations, using fine-tuning to recover the drop in accuracy. However, it is generally difficult to train neural networks which use low-bit expressions. One reason is that the weights in the middle layer of the DNN have a wide dynamic range and so when quantizing the wide dynamic range into a few bits, the step size becomes large, which leads to a large quantization error and finally a large degradation in accuracy. To solve this problem, this paper makes the following three contributions without using any additional learning parameters and hyper-parameters. First, we analyze how batch normalization, which causes the aforementioned problem, disturbs the fine-tuning of the quantized DNN. Second, based on these results, we propose a new pruning method called Pruning for Quantization (PfQ) which removes the filters that disturb the fine-tuning of the DNN while not affecting the inferred result as far as possible. Third, we propose a workflow of fine-tuning for quantized DNNs using the proposed pruning method(PfQ). Experiments using well-known models and datasets confirmed that the proposed method achieves higher performance with a similar model size than conventional quantization methods including fine-tuning.

Abstract (translated)

URL

https://arxiv.org/abs/2011.06751

PDF

https://arxiv.org/pdf/2011.06751.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot