Paper Reading AI Learner

hyper-sinh: An Accurate and Reliable Function from Shallow to Deep Learning in TensorFlow and Keras

2020-11-15 23:38:59
Luca Parisi, Renfei Ma, Narrendar RaviChandran, Matteo Lanzillotta

Abstract

This paper presents the 'hyper-sinh', a variation of the m-arcsinh activation function suitable for Deep Learning (DL)-based algorithms for supervised learning, such as Convolutional Neural Networks (CNN). hyper-sinh, developed in the open source Python libraries TensorFlow and Keras, is thus described and validated as an accurate and reliable activation function for both shallow and deep neural networks. Improvements in accuracy and reliability in image and text classification tasks on five (N = 5) benchmark data sets available from Keras are discussed. Experimental results demonstrate the overall competitive classification performance of both shallow and deep neural networks, obtained via this novel function. This function is evaluated with respect to gold standard activation functions, demonstrating its overall competitive accuracy and reliability for both image and text classification.

Abstract (translated)

URL

https://arxiv.org/abs/2011.07661

PDF

https://arxiv.org/pdf/2011.07661.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot