Paper Reading AI Learner

Using Explainable Scheduling for the Mars 2020 Rover Mission

2020-11-17 16:10:49
Jagriti Agrawal, Amruta Yelamanchili, Steve Chien

Abstract

Understanding the reasoning behind the behavior of an automated scheduling system is essential to ensure that it will be trusted and consequently used to its full capabilities in critical applications. In cases where a scheduler schedules activities in an invalid location, it is usually easy for the user to infer the missing constraint by inspecting the schedule with the invalid activity to determine the missing constraint. If a scheduler fails to schedule activities because constraints could not be satisfied, determining the cause can be more challenging. In such cases it is important to understand which constraints caused the activities to fail to be scheduled and how to alter constraints to achieve the desired schedule. In this paper, we describe such a scheduling system for NASA's Mars 2020 Perseverance Rover, as well as Crosscheck, an explainable scheduling tool that explains the scheduler behavior. The scheduling system and Crosscheck are the baseline for operational use to schedule activities for the Mars 2020 rover. As we describe, the scheduler generates a schedule given a set of activities and their constraints and Crosscheck: (1) provides a visual representation of the generated schedule; (2) analyzes and explains why activities failed to schedule given the constraints provided; and (3) provides guidance on potential constraint relaxations to enable the activities to schedule in future scheduler runs.

Abstract (translated)

URL

https://arxiv.org/abs/2011.08733

PDF

https://arxiv.org/pdf/2011.08733.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot