Paper Reading AI Learner

Recurrent CNN for 3D Gaze Estimation using Appearance and Shape Cues

2018-09-17 11:09:42
Cristina Palmero, Javier Selva, Mohammad Ali Bagheri, Sergio Escalera


Gaze behavior is an important non-verbal cue in social signal processing and human-computer interaction. In this paper, we tackle the problem of person- and head pose-independent 3D gaze estimation from remote cameras, using a multi-modal recurrent convolutional neural network (CNN). We propose to combine face, eyes region, and face landmarks as individual streams in a CNN to estimate gaze in still images. Then, we exploit the dynamic nature of gaze by feeding the learned features of all the frames in a sequence to a many-to-one recurrent module that predicts the 3D gaze vector of the last frame. Our multi-modal static solution is evaluated on a wide range of head poses and gaze directions, achieving a significant improvement of 14.6% over the state of the art on EYEDIAP dataset, further improved by 4% when the temporal modality is included.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot