Paper Reading AI Learner

Making Graph Neural Networks Worth It for Low-Data Molecular Machine Learning

2020-11-24 16:52:04
Aneesh Pappu, Brooks Paige

Abstract

Graph neural networks have become very popular for machine learning on molecules due to the expressive power of their learnt representations. However, molecular machine learning is a classically low-data regime and it isn't clear that graph neural networks can avoid overfitting in low-resource settings. In contrast, fingerprint methods are the traditional standard for low-data environments due to their reduced number of parameters and manually engineered features. In this work, we investigate whether graph neural networks are competitive in small data settings compared to the parametrically 'cheaper' alternative of fingerprint methods. When we find that they are not, we explore pretraining and the meta-learning method MAML (and variants FO-MAML and ANIL) for improving graph neural network performance by transfer learning from related tasks. We find that MAML and FO-MAML do enable the graph neural network to outperform models based on fingerprints, providing a path to using graph neural networks even in settings with severely restricted data availability. In contrast to previous work, we find ANIL performs worse that other meta-learning approaches in this molecule setting. Our results suggest two reasons: molecular machine learning tasks may require significant task-specific adaptation, and distribution shifts in test tasks relative to train tasks may contribute to worse ANIL performance.

Abstract (translated)

URL

https://arxiv.org/abs/2011.12203

PDF

https://arxiv.org/pdf/2011.12203.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot