Paper Reading AI Learner

ImCLR: Implicit Contrastive Learning for Image Classification

2020-11-25 10:15:24
John Chen, Samarth Sinha, Anastasios Kyrillidis

Abstract

Contrastive learning is an effective method for learning visual representations. In most cases, this involves adding an explicit loss function to encourage similar images to have similar representations, and different images to have different representations. Inspired by contrastive learning, we introduce a clever input construction for Implicit Contrastive Learning (ImCLR), primarily in the supervised setting: there, the network can implicitly learn to differentiate between similar and dissimilar images. Each input is presented as a concatenation of two images, and the label is the mean of the two one-hot labels. Furthermore, this requires almost no change to existing pipelines, which allows for easy integration and for fair demonstration of effectiveness on a wide range of well-accepted benchmarks. Namely, there is no change to loss, no change to hyperparameters, and no change to general network architecture. We show that ImCLR improves the test error in the supervised setting across a variety of settings, including 3.24% on Tiny ImageNet, 1.30% on CIFAR-100, 0.14% on CIFAR-10, and 2.28% on STL-10. We show that this holds across different number of labeled samples, maintaining approximately a 2% gap in test accuracy down to using only 5% of the whole dataset. We further show that gains hold for robustness to common input corruptions and perturbations at varying severities with a 0.72% improvement on CIFAR-100-C, and in the semi-supervised setting with a 2.16% improvement with the standard benchmark $\Pi$-model. We demonstrate that ImCLR is complementary to existing data augmentation techniques, achieving over 1% improvement on CIFAR-100 and 2% improvement on Tiny ImageNet by combining ImCLR with CutMix over either baseline, and 2% by combining ImCLR with AutoAugment over either baseline.

Abstract (translated)

URL

https://arxiv.org/abs/2011.12618

PDF

https://arxiv.org/pdf/2011.12618.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot