Paper Reading AI Learner

Deep Convolutional Neural Networks: A survey of the foundations, selected improvements, and some current applications

2020-11-25 19:03:23
Lars Lien Ankile, Morgan Feet Heggland, Kjartan Krange

Abstract

Within the world of machine learning there exists a wide range of different methods with respective advantages and applications. This paper seeks to present and discuss one such method, namely Convolutional Neural Networks (CNNs). CNNs are deep neural networks that use a special linear operation called convolution. This operation represents a key and distinctive element of CNNs, and will therefore be the focus of this method paper. The discussion starts with the theoretical foundations that underlie convolutions and CNNs. Then, the discussion proceeds to discuss some improvements and augmentations that can be made to adapt the method to estimate a wider set of function classes. The paper mainly investigates two ways of improving the method: by using locally connected layers, which can make the network less invariant to translation, and tiled convolution, which allows for the learning of more complex invariances than standard convolution. Furthermore, the use of the Fast Fourier Transform can improve the computational efficiency of convolution. Subsequently, this paper discusses two applications of convolution that have proven to be very effective in practice. First, the YOLO architecture is a state of the art neural network for image object classification, which accurately predicts bounding boxes around objects in images. Second, tumor detection in mammography may be performed using CNNs, accomplishing 7.2% higher specificity than actual doctors with only .3% less sensitivity. Finally, the invention of technology that outperforms humans in different fields also raises certain ethical and regulatory questions that are briefly discussed.

Abstract (translated)

URL

https://arxiv.org/abs/2011.12960

PDF

https://arxiv.org/pdf/2011.12960.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot