Paper Reading AI Learner

Layer Pruning via Fusible Residual Convolutional Block for Deep Neural Networks

2020-11-29 12:51:16
Pengtao Xu, Jian Cao, Fanhua Shang, Wenyu Sun, Pu Li

Abstract

In order to deploy deep convolutional neural networks (CNNs) on resource-limited devices, many model pruning methods for filters and weights have been developed, while only a few to layer pruning. However, compared with filter pruning and weight pruning, the compact model obtained by layer pruning has less inference time and run-time memory usage when the same FLOPs and number of parameters are pruned because of less data moving in memory. In this paper, we propose a simple layer pruning method using fusible residual convolutional block (ResConv), which is implemented by inserting shortcut connection with a trainable information control parameter into a single convolutional layer. Using ResConv structures in training can improve network accuracy and train deep plain networks, and adds no additional computation during inference process because ResConv is fused to be an ordinary convolutional layer after training. For layer pruning, we convert convolutional layers of network into ResConv with a layer scaling factor. In the training process, the L1 regularization is adopted to make the scaling factors sparse, so that unimportant layers are automatically identified and then removed, resulting in a model of layer reduction. Our pruning method achieves excellent performance of compression and acceleration over the state-of-the-arts on different datasets, and needs no retraining in the case of low pruning rate. For example, with ResNet-110, we achieve a 65.5%-FLOPs reduction by removing 55.5% of the parameters, with only a small loss of 0.13% in top-1 accuracy on CIFAR-10.

Abstract (translated)

URL

https://arxiv.org/abs/2011.14356

PDF

https://arxiv.org/pdf/2011.14356.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot